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The genesis of IONICS

Austin Marriott South, Austin, TX
February 19, 2015

ergy Applications Workshop

> |IONICS was inspired by gaps in previous
device-oriented ARPA-E electrochemical
programs.

Start Time | Speaker Topic

7:30 REGISTRATION & BREAKFAST

8:00 Ping Liu, ARPA-E Welcome, overview of ARPA-E, introductions
MORNING PRESENTATIONS

8:30 Paul Albertus, ARPA-E ARPA-E perspectives on solid ion conductors

9:00 John Goodenough, UT Austin Solid electrolytes

9:30 Ryoiji Kanng, Tokyo Institute of Solid lithium ion conductor with the LGPS type
Technology structure and its application to all solid-state battery

10:00 Break

10:15 Gerbrand Ceder, MIT Computational tools to predict the behavior of solid

state conduction

10:45 Sossing Haile, Caltech

11:15 Ramamogarthy Ramesh, UC Berkeley | Interfaces in complex functional oxides

12:00 LUNCH
AFTERNOON BREAKOUT SESSIONS

1:00 Breakout session 1 (topic given at workshop)

2:30 Read out from session 1 and discussion

3:00 Break

3:15 Breakout session 2 (topic given at workshop)

4:45 Read out from session 2 and discussion

5:15 Wrap up

5:30

Adjourn to dinner in Austin




IONICS: Separators for electrochemical cells

Create solid separators for
electrochemical cells using solid ion
conductors to enable transformational
performance and cost improvements
In electrochemical cells.
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IONICS: a transformational component
demonstrated in the device context

Typical ARPA-E program IONICS program

Device metrics: Component metrics:

W/kg, Wh/kg, $/kW, $/kwh, Selectivity, stability, separator
durability, mA/cm? at a given and interfacial ASR, dendrite
V, etc. resistance, $/m2,

Qi O|-9Li“"--§__—‘_3-‘ Source of picture: Alveo 21
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IONICS focuses on three types of separators for
three cell platforms

Category 1: Li metal battery Category 2: Flow battery
Block dendrites H'gh selectivity
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Why are we still talking about rechargeable lithium
metal batteries, seven (in the case of IONICS) and
~fifty (for the field in general) years later?
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“DARPA has funded innovative
scientific research and
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field of brain-computer interfaces
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Takeaways from these recollections

> Battery R&D requires time and benefits from investments by multiple
programs and agencies, and the private sector.

> For an ARPA-E size and duration program, focusing on a single
component (in a device context) worked for IONICS.
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Status and challenges in enabling the lithium
metal electrode for high-energy and low-cost
rechargeable batteries

Paul Albertus©'*, Susan Babinec', Scott Litzelman? and Aron Newman?

Enabling the reversible lithium metal electrode is essential for surpassing the energy content of today's lithium-ion cells.
Although lithium metal cells for niche applications have been developed already, efforts are underway to create recharge-
able lithium metal batteries that can significantly advance vehicle electrification and grid energy storage. In this Perspective,
we focus on three tasks to guide and further advance the reversible lithium metal electrode. First, we summarize the state of
research and commercial efforts in terms of four key performance parameters, and identify additional performance parameters
of interest. We then advocate for the use of limited lithium (<30 m) to ensure early identification of technical challenges asso-
ciated with stable and dendrite-free cycling and a more rapid transition to commercially relevant designs. Finally, we provide a
cost target and outline material costs and manufacturing methods that could allow lithium metal cells to reach 100US$ kWh.

sectors. Their scale up is truly historic: Li-ion is now the

only rechargeable battery other than lead acid produced at
>5 GWh y!, with a worldwide manufacturing expansion reach-
ing hundreds of GWh yr* over the next five years'”. Li-ion bat-
tery packs achieve long cycle life (in the thousands), high charge/
discharge rates (>1 C), high energy content (specific energy of
~150 Wh kg! and energy density of 250 Wh L), and low capital
costs (<300 US$ kWh')*". However, the present Li-ion material
platform (a graphite negative electrode coupled with a metal oxide
positive electrode) is not expected to reach the US Department
of Energy’s (DOE) electric vehicle pack goals of 235 Wh kg™,
500 Wh L and 125 US$ kWh-! (ref. *). The intercalation mecha-
nism that fundamentally enables the excellent cycling of Li-ion also
places an upper limit on energy content because of the weight and
volume of the hosts into which Li* intercalates. Thus, there remains
an acute need for higher-energy alternatives to the Li-ion material
platform®®. Replacing the graphite electrode with lithium metal
(Fig. 1), which results in a ~35% increase in specific energy and
~50% increase in energy density at the cell level, provides a path to
reach those goals, especially if the introduction of lithium metal is
combined with reduction of the liquid electrolytes, which impose
both safety and thermal management mass and volume require-
ments at the pack level"*.

Stable cycling of lithium metal requires high Coulombic effi-
ciency, a low and stable resistance, and the aveidance of lithium
dendrites. To meet these requirements a myriad of approaches have
been pursued (starting in the 1960s), most of them focused on the
use of solid, liquid, composite and other electrolytes’-°. Vapour-
deposited lithium phosphorus oxynitride (LiIPON) solid separa-
tors, and thin-film cells based thereon, were a major advance in
the late 1990s and remain the definitive example of stable cycling of
lithium metal at room temperature™'. Another key advance came
with the development of polyethylene oxide polymer electrolytes,
which unfortunately require elevated temperature (~80 °C) and

Li-ian batteries are transforming the transportation and grid

cathodes operating at <4 V versus Li (refs **°). Because neither of
these material platforms currently surpass Li-ion for vehicle or grid
applications, development efforts continue. Unfortunately, such
efforts are hampered by the lack of a systematic understanding —
incorporating both theory and experimental validation — of the
conditions under which lithium dendrites do and do not form"*=**",
As just one example, the physical form of lithium dendrites (or
more generically, lithium penetrations) differs significantly based
on the medium through which they are growing; lithium penetra-
tion through a polycrystalline inorganic solid electrolyte has a much
different morphology than growth through a liquid**'. Regardless
of the approach, challenges for high-rate, high-capacity cycling
of a metal electrode are profound. Metal dendrites are known
to grow in numerous systems, and observations of Ag dendrite
growth through a solid inorganic ion conductors appear to go back
neatly 100 years”*". In the case of lithium, dendrites are known to
grow through many classes of matter, including liquids, polymers,
glasses, and polycrystalline inorganic solid electrolytes """,

In this Perspective, we provide a new figure that includes four
parameters of critical importance for the practical development
of a lithium metal electrode, and use this figure to summarize
the status of both academic and commercial efforts. We find that
although impressive results have been achieved for subsets of the
four critical parameters, none have met targets for all four, and we
suggest researchers focus their attention on the complete set of criti-
cal parameters when cycling cells. Perhaps the biggest gap in the
parameters used for lithium metal cycling today is a large excess of
lithium — far more than could be included in a high-energy cell —
and an amount that makes it difficult to perform the careful experi-
ments needed to ensure stable, dendrite-free cycling. In particular,
we believe that numerous reports of stable lithium metal cycling
in symmetric Li/Li cells are in fact the result of ‘soft shorts’ (stable
electronic connections between the electrodes). These carry elec-
tronic current; fortunately, the use of a limited amount of lithium
(<30 pm, now available commercially) can help identify soft shorts

'Advanced Research Projects Agency - Energy, US Department of Energy, Washington, DC, USA. *Booz Allen Hamilton, Washington, DC, USA.

*e-mail: paul.albertus@hq.doe.gov
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discharge rates (>1 C), high energy content (specific energy of
~150 Wh kg! and energy density of 250 Wh L), and low capital
costs (<300 US$ kWh')*". However, the present Li-ion material
platform (a graphite negative electrode coupled with a metal oxide
positive electrode) is not expected to reach the US Department
of Energy’s (DOE) electric vehicle pack goals of 235 Wh kg™,
500 Wh L and 125 US$ kWh-! (ref. *). The intercalation mecha-
nism that fundamentally enables the excellent cycling of Li-ion also
places an upper limit on energy content because of the weight and
volume of the hosts into which Li* intercalates. Thus, there remains
an acute need for higher-energy alternatives to the Li-ion material
platform®®. Replacing the graphite electrode with lithium metal
(Fig. 1), which results in a ~35% increase in specific energy and
~50% increase in energy density at the cell level, provides a path to
reach those goals, especially if the introduction of lithium metal is
combined with reduction of the liquid electrolytes, which impose
both safety and thermal management mass and volume require-
ments at the pack level"*.

Stable cycling of lithium metal requires high Coulombic effi-
ciency, a low and stable resistance, and the aveidance of lithium
dendrites. To meet these requirements a myriad of approaches have
been pursued (starting in the 1960s), most of them focused on the
use of solid, liquid, composite and other electrolytes’-°. Vapour-
deposited lithium phosphorus oxynitride (LiIPON) solid separa-
tors, and thin-film cells based thereon, were a major advance in
the late 1990s and remain the definitive example of stable cycling of
lithium metal at room temperature™'. Another key advance came
with the development of polyethylene oxide polymer electrolytes,
which unfortunately require elevated temperature (~80 °C) and

As just one example, the physical form of lithium dendrites (or
more generically, lithium penetrations) differs significantly based
on the medium through which they are growing; lithium penetra-
tion through a polycrystalline inorganic solid electrolyte has a much
different morphology than growth through a liquid**'. Regardless
of the approach, challenges for high-rate, high-capacity cycling
of a metal electrode are profound. Metal dendrites are known
to grow in numerous systems, and observations of Ag dendrite
growth through a solid inorganic ion conductors appear to go back
neatly 100 years”*". In the case of lithium, dendrites are known to
grow through many classes of matter, including liquids, polymers,
glasses, and polycrystalline inorganic solid electrolytes """,

In this Perspective, we provide a new figure that includes four
parameters of critical importance for the practical development
of a lithium metal electrode, and use this figure to summarize
the status of both academic and commercial efforts. We find that
although impressive results have been achieved for subsets of the
four critical parameters, none have met targets for all four, and we
suggest researchers focus their attention on the complete set of criti-
cal parameters when cycling cells. Perhaps the biggest gap in the
parameters used for lithium metal cycling today is a large excess of
lithium — far more than could be included in a high-energy cell —
and an amount that makes it difficult to perform the careful experi-
ments needed to ensure stable, dendrite-free cycling. In particular,
we believe that numerous reports of stable lithium metal cycling
in symmetric Li/Li cells are in fact the result of ‘soft shorts’ (stable
electronic connections between the electrodes). These carry elec-
tronic current; fortunately, the use of a limited amount of lithium
(<30 pm, now available commercially) can help identify soft shorts

'Advanced Research Projects Agency - Energy, US Department of Energy, Washington, DC, USA. *Booz Allen Hamilton, Washington, DC, USA.

*e-mail: paul.albertus@hq.doe.gov
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Enabling the reversible lithium metal electrode is essential for surpassing the energy content of today's lithium-ion cells.
Although lithium metal cells for niche applications have been developed already, efforts are underway to create recharge-
able lithium metal batteries that can significantly advance vehicle electrification and grid energy storage. In this Perspective,
we focus on three tasks to guide and further advance the reversible lithium metal electrode. First, we summarize the state of
research and commercial efforts in terms of four key performance parameters, and identify additional performance parameters
of interest. We then advocate for the use of limited lithium (<30 m) to ensure early identification of technical challenges asso-
ciated with stable and dendrite-free cycling and a more rapid transition to commercially relevant designs. Finally, we provide a
cost target and outline material costs and manufacturing methods that could allow lithium metal cells to reach 100 US$ kWh™'.
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>5 GWh y!, with a worldwide manufacturing expansion reach-
ing hundreds of GWh yr* over the next five years'”. Li-ion bat-
tery packs achieve long cycle life (in the thousands), high charge/
discharge rates (>1 C), high energy content (specific energy of
~150 Wh kg! and energy density of 250 Wh L), and low capital
costs (<300 US$ kWh')*". However, the present Li-ion material
platform (a graphite negative electrode coupled with a metal oxide
positive electrode) is not expected to reach the US Department
of Energy’s (DOE) electric vehicle pack goals of 235 Wh kg™,
500 Wh L and 125 US$ kWh-! (ref. *). The intercalation mecha-
nism that fundamentally enables the excellent cycling of Li-ion also
places an upper limit on energy content because of the weight and
volume of the hosts into which Li* intercalates. Thus, there remains
an acute need for higher-energy alternatives to the Li-ion material
platform®®. Replacing the graphite electrode with lithium metal
(Fig. 1), which results in a ~35% increase in specific energy and
~50% increase in energy density at the cell level, provides a path to
reach those goals, especially if the introduction of lithium metal is
combined with reduction of the liquid electrolytes, which impose
both safety and thermal management mass and volume require-
ments at the pack level"*.

Stable cycling of lithium metal requires high Coulombic effi-
ciency, a low and stable resistance, and the aveidance of lithium
dendrites. To meet these requirements a myriad of approaches have
been pursued (starting in the 1960s), most of them focused on the
use of solid, liquid, composite and other electrolytes’-°. Vapour-
deposited lithium phosphorus oxynitride (LiIPON) solid separa-
tors, and thin-film cells based thereon, were a major advance in
the late 1990s and remain the definitive example of stable cycling of
lithium metal at room temperature™'. Another key advance came
with the development of polyethylene oxide polymer electrolytes,
which unfortunately require elevated temperature (~80 °C) and

Li-ian batteries are transforming the transportation and grid

cathodes operating at <4 V versus Li (refs **°). Because neither of
these material platforms currently surpass Li-ion for vehicle or grid
applications, development efforts continue. Unfortunately, such
efforts are hampered by the lack of a systematic understanding —
incorporating both theory and experimental validation — of the
conditions under which lithium dendrites do and do not form"*=**",
As just one example, the physical form of lithium dendrites (or
more generically, lithium penetrations) differs significantly based
on the medium through which they are growing; lithium penetra-
tion through a polycrystalline inorganic solid electrolyte has a much
different morphology than growth through a liquid**'. Regardless
of the approach, challenges for high-rate, high-capacity cycling
of a metal electrode are profound. Metal dendrites are known
to grow in numerous systems, and observations of Ag dendrite
growth through a solid inorganic ion conductors appear to go back
neatly 100 years”*". In the case of lithium, dendrites are known to
grow through many classes of matter, including liquids, polymers,
glasses, and polycrystalline inorganic solid electrolytes """,

In this Perspective, we provide a new figure that includes four
parameters of critical importance for the practical development
of a lithium metal electrode, and use this figure to summarize
the status of both academic and commercial efforts. We find that
although impressive results have been achieved for subsets of the
four critical parameters, none have met targets for all four, and we
suggest researchers focus their attention on the complete set of criti-
cal parameters when cycling cells. Perhaps the biggest gap in the
parameters used for lithium metal cycling today is a large excess of
lithium — far more than could be included in a high-energy cell —
and an amount that makes it difficult to perform the careful experi-
ments needed to ensure stable, dendrite-free cycling. In particular,
we believe that numerous reports of stable lithium metal cycling
in symmetric Li/Li cells are in fact the result of ‘soft shorts’ (stable
electronic connections between the electrodes). These carry elec-
tronic current; fortunately, the use of a limited amount of lithium
(<30 pm, now available commercially) can help identify soft shorts
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A possible future target:
350 kW chargers

75 KWh battery pack

4.67 C-rate

For 5 mAh/cm?, >20 mA/cm?

350 kW
Electrify
America
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https://www.greencarreports.com/news/1116550_electrify-america-switches-on-the-first-350-kw-fast-charging-station-in-chicopee-mass

Fast charge Li metal at >20 mA/cm? ??

Crazy good or crazy bad?




Molten Na, Li with solid electrolytes cycle at >100s of mA/cm?

A Model for Degradation of Ceramic Electrolytes in Na-S Batteries

R. H. RICHMAN and G. J. TENNENHOUSE 1975
Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 48121
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Fig. 1. Schematic of crack geometry and current focusing
near ceramic surface.

Journal of the American Ceramic Society, Volume 58, Issuel-2,
January 1975, Pages 63-67



Molten Na, Li with solid electrolytes cycle at >100s of mA/cm?

A Model for Degradation of Ceramic Electrolytes in Na-S Batteries

R. H. RICHMAN and G. J. TENNENHOUSE 1975
Scientific Research Staff, Ford Motor Company, Dearborn, Michigan 48121
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Fig. 4. Variation of critical current density with crack length

for several crack thicknesses. Vertical dashed lines are drawn at

observed threshold values for 9.9-1.1 and 9.25-0.25 electro-
lytes.

Journal of the American Ceramic Society, Volume 58, Issuel-2,
January 1975, Pages 63-67

Molten lithium

Solid electrolyte

Liquid cathode

Fig. 1| Schematic and optical image of the Li||LLZTO||liquid cathode

battery. a, Schematic of the Li||solid electrolyte||liquid cathode battery.

b, Digital photo of a U-shaped LLZTO tube. ¢, Digital photo of an
assembled Li||LLZTO||Sn-Pb alloy battery.
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The last 5 years have produced outstanding scientific work in the
area of solid electrolytes and lithium metal

Electrodeposition driven fracture mechanism (2017)

Microscopy of Li penetration (2020)

In-plane operando video microscopy
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There is still limited and fragmented knowledge in quantifying
performance limits of lithium metal with a solid-state separator
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There are lots of creative ideas informed by the improving science

» 3D anodes to reduce the interfacial current density.

» Making a “perfect” interface (in geometrical and other properties).

> Warming the battery during fast charge (already done for Li-ion today).
> Interlayers.

> Li metal alloys.

> Building cells without metallic Li.

> Processing.

> L ]




Thank you!
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